
Date: 6th of February 2024 1 Version: 2.0e

User Guide
and

Technical Reference
Manual

wogtest

MicroConsult GmbH

Author: Remo Markgraf

Version: 2.0e

Date: 6th of February 2024

Date: 6th of February 2024 2 Version: 2.0e

--- Intentionally left blank ---

Date: 6th of February 2024 3 Version: 2.0e

Contents

1 Introduction ... 6

2 Installation and Examples ... 7

2.1 Executing the Sample Tests .. 9

3 Supported Functionality .. 10

3.1 User defined extensions .. 10

3.2 Limitations .. 10

4 Designing Tests .. 11

4.1 TEST_MAIN ... 11

4.2 Test Result Output ... 11

4.3 Define a Test .. 13

4.4 wogtest Configurations .. 14

4.4.1 wogtest Configurations in a C++ environment .. 14

4.4.2 wogtest Configurations in a pure C setup ... 15

5 Testing Macros .. 16

5.1 TEST .. 16

5.2 TEST_F .. 16

5.2.1 Fixture Classes ... 17

5.2.2 SetUp .. 17

5.2.3 TearDown ... 18

5.2.4 Order of SetUp and TearDown calls ... 18

5.3 Boolean Testing ... 19

5.3.1 ASSERT_TRUE(x) ... 19

5.3.2 ASSERT_FALSE(x) .. 19

5.3.3 EXPECT_TRUE(x) ... 19

5.3.4 EXPECT_FALSE(x) .. 19

5.4 Integer Testing ... 19

5.4.1 ASSERT_EQ(x, y) .. 20

5.4.2 ASSERT_NE(x, y) .. 20

5.4.3 ASSERT_LT(x, y) ... 20

5.4.4 ASSERT_LE(x, y) ... 20

5.4.5 ASSERT_GT(x, y) .. 21

5.4.6 ASSERT_GE(x, y) .. 21

5.4.7 EXPECT_EQ(x, y) .. 21

5.4.8 EXPECT_NE(x, y) .. 21

5.4.9 EXPECT_LT(x, y) ... 22

5.4.10 EXPECT_LE(x, y) ... 22

5.4.11 EXPECT_GT(x, y) .. 22

5.4.12 EXPECT_GE(x, y) .. 22

Date: 6th of February 2024 4 Version: 2.0e

5.5 String Testing ... 23

5.5.1 ASSERT_STREQ(x, y) ... 23

5.5.2 ASSERT_STRNE(x, y) ... 23

5.5.3 ASSERT_STRCASEEQ(x, y) ... 23

5.5.4 ASSERT_STRCASENE(x, y) ... 24

5.5.5 EXPECT_STREQ(x, y) ... 24

5.5.6 EXPECT_STRNE(x, y) ... 24

5.5.7 EXPECT_STRCASEEQ(x, y) ... 24

5.5.8 EXPECT_STRCASENE(x, y) ... 25

5.6 Floating Point Testing .. 25

5.6.1 ASSERT_FLOAT_EQ(x, y) ... 26

5.6.2 ASSERT_DOUBLE_EQ(x, y) ... 26

5.6.3 ASSERT_NEAR(x, y, epsilon) .. 26

5.6.4 EXPECT_FLOAT_EQ(x, y) ... 27

5.6.5 EXPECT_DOUBLE_EQ(x, y) ... 27

5.6.6 EXPECT_NEAR(x, y, epsilon) .. 27

5.7 Exception Testing .. 28

5.7.1 ASSERT_THROW(x, exception_type) ... 28

5.7.2 ASSERT_NO_THROW(x) .. 28

5.7.3 ASSERT_ANY_THROW(x); ... 28

5.7.4 EXPECT_THROW(x, exception_type) ... 29

5.7.5 EXPECT_NO_THROW(x) .. 29

5.7.6 EXPECT_ANY_THROW(x); ... 29

5.8 Test Execution Macros .. 30

5.8.1 SUCCEED .. 30

5.8.2 FAIL .. 30

5.8.3 ADD_FAILURE ... 30

5.8.4 ADD_FAILURE_AT(file,line) ... 30

5.8.5 HasFatalFailure .. 31

5.8.6 HasNonfatalFailure ... 31

5.8.7 HasFailure .. 31

6 Testing in C ... 32

6.1 Writing a TEST in pure C setup ... 32

6.2 Supported features in pure C setup ... 32

6.3 Additional features ... 32

6.3.1 SetUp Functions ... 33

6.3.2 TearDown Functions ... 33

6.3.3 TESTCASE Macro .. 33

6.4 Limitations of a pure C setup ... 34

7 License .. 35

Date: 6th of February 2024 5 Version: 2.0e

8 History of Change ... 36

Date: 6th of February 2024 6 Version: 2.0e

1 Introduction

wogtest is a single include file embedded unit test framework for C and C++.

wogtest supports a substantial subset of the google test syntax.

wogtest aims at executing tests previously used under google test framework control on the PC
on the target as well, without the need to migrate the google test framework to the target.

wogtest is provided free of charge to MicroConsult customers (please refer to License)

To comply with embedded requirements, wogtest is optimized to be applied

• without C++ streams (often too big for small controllers)

• without dynamic memory allocation on the heap (due to MISRA recommendations)

• also in a C-language subset of functionality in cases where no C++ compiler is available

Date: 6th of February 2024 7 Version: 2.0e

2 Installation and Examples

wogtest can be downloaded at

https://www.microconsult.de/wogtest

The quarterly MicroConsult newsletter indicates when a new release is available for download.
For your convenience, you are welcome to subscribe to the newsletter to avoid polling for new
releases.

www.microconsult.de/newsletter

wogtest is provided as a single ZIP compressed file: wogtest.zip

wogtest.zip contains the following directory/file structure:

Figure 1: wogtest.zip file structure

The file wogtest_manual.pdf represents this document. Wogtest_Vr_vp.txt is an ASCII file
which is intentionally left blank and may contain last minute hints where r represents the
release, v the version and p an optional patch level as a single lowercase character.

https://www.microconsult.de/wogtest
https://www.microconsult.de/1366-0-Anmeldung-Formular.html

Date: 6th of February 2024 8 Version: 2.0e

Figure 2: wogtest project structure

In the application context files may be copied into the project structure of the project under test.

.cpp and .hpp files are used in the C++ setup, whereas .c and .h files are used in the C setup.

The gtest/gtest.h file includes the wogtest.h/wogtest.hpp depending on the C/C++ compilation:

#ifndef GTEST_H_

#define GTEST_H_

#define ENABLE_TESTS

#ifdef __cplusplus

#include "wogtest.hpp"

#else

#include "wogtest.h"

#endif

#endif //GTEST_H_

The ENABLE_TESTS macro is not used within wogtest and is intended for user purposes to

switch on or off conditional compilations in the tests.

#include “gtest/gtest.h”

void foo(void)

{

#ifdef ENABLE_TESTS

 //do something only in test code

#endif //ENABLE_TESTS

}

Date: 6th of February 2024 9 Version: 2.0e

2.1 Executing the Sample Tests

Please refer to the chapter 4 for details.

Potential steps to be performed to run the sample tests in C++ setup:
(Please refer to chapter 6.1 for executing the sample tests in a pure C setup.)

• Setup your project by replacing the productive main function by the main_test.cpp
function.

• If tests were already written for google test and shall be re-executed under wogtest
control, either place them in the Tests directory (see figure 1 above) or make sure that
the wogtest header files may be accessed via the include path.

• For new tests write them into xyz_test.cpp files.

• A sample_test.cpp file is provided as part of the wogtest sources and may be used as
template for own tests.

• Copy the gtest directory with the gtest.h and wogtest.hpp header files included into the
source path where your test sources main_test.cpp and xyz_test.cpp are located. Thus
the include path “gtest/gtest.h” is resolved by the compiler.

• Make sure that in your project redirection of printf output to a terminal or debugger print
viewer window properly works.

• Build and run the project and observe the test results.

• The test main function terminates with the return value 0 if all tests passed and 1
otherwise.

Date: 6th of February 2024 10 Version: 2.0e

3 Supported Functionality

wogtest supports a substantial subset of the google test functions and macros while providing
the same syntax.

Please refer to the list of macros/assertions/expectations for details.

The software under test can be written in C++, C or even Assembler.
It is assumed that the tests are written in C++ wherever possible.
In cases where no C++ compiler is available, a subset of functionality is available for tests in C
(please refer to chapter 6 Testing in C for details).

Expectations and assertions can be extended by user output.

Example:

EXPECT_FALSE(true) << "assumed to fail" << " in line " << 14;

ASSERT_TRUE(false) << "assumed to fail in line " << 15;

3.1 User defined extensions

For strings and integers, the operator<< is predefined

Test_Assert& Test_Assert::operator<<(const char *str);

Test_Assert& Test_Assert::operator<<(const uint32_t num);

Further operator<< types may be added by the user in the wogtest.hpp include file.

If the USE_TEMPLATES is switched on

template<typename T> Test_Assert& operator<<(const T par)

{

 …

 gtests.append_message_buffer(par);

 …

A template is applied to generate the code and thus, only the gtests.append_message_buffer
method which takes the new type as parameter needs to be provided to output the parameter to
the output buffer.

3.2 Limitations

Currently not supported functions in comparison to google Test:

• Parameterized tests using TEST_P

Not yet implemented, may be considered for future extensions.

• google Mock
Since TESTs are expected to be executed on the target, the real HW and drivers can be
used; absence of a mocking tool support therefore does not do any harm.
Not yet implemented, may be considered for future extensions.

Date: 6th of February 2024 11 Version: 2.0e

4 Designing Tests

4.1 TEST_MAIN

Since unit tests have to be executed in a specific test runner environment, you may either

• create your own test project including a main_test source and the units under test or

• replace the main function in your productive project with a main_test source

In either case, you have to add the sources containing your tests for the units under test.
wogtest main supports the same syntax as google test aiming at the possibility of using the
test_main.cpp source for both google test and for wogtest.
The return value of the RUN_ALL_TESTS macro is also the same as in google test:

• 0 if all tests passed

• 1 otherwise

A sample main_test.cpp and main_test.c are included in the wogtest .zip file.

main_test.cpp sample:

#include "gtest/gtest.h"

GTEST_API_ int main(void)

{

 //initialize what ever is necessary to print out

 configHardware();

 testing::InitGoogleTest(); //remove this line in case of main_test.c

 return RUN_ALL_TESTS();

}

You may use as well

GTEST_API_ int main(int argc, const char *const argv[])

Please note: Parameters are ignored in the current version of wogtest.

4.2 Test Result Output

Your environment has to be configured for output redirection to display the ASCII test results.

Any terminal connected to a serail interface or even the debug print viewer is sufficient to
display the test result. If evaluation boards are used at an early test stage, where the target
probably does not exist yet, theses boards often feature a debugger chip providing tunneling of
an UART interface to a virtual Com port via USB.

When printf works, the requirements to output wogtest results are fulfilled

wogtest uses colored output, green for success and red for failure similar to google test.

Example:

#include "gtest/gtest.h"

TEST(foo, bar) {

 ASSERT_TRUE(1);

}

Result of test execution on putty:

https://github.com/sheredom/utest.h#utest_main

Date: 6th of February 2024 12 Version: 2.0e

Example:

#include "gtest/gtest.h"

TEST(foo, bar) {

 ASSERT_TRUE(1);

}

TEST(foo, bar_true) {

 uint32_t i = 1;

 ASSERT_TRUE(i); // pass!

 ASSERT_TRUE(42); // pass!

 ASSERT_TRUE(0); // fail!

}

Result of test execution on putty:

Date: 6th of February 2024 13 Version: 2.0e

4.3 Define a Test

To define a test to run, perform the following;

#include "gtest/gtest.h"

TEST(foo, bar) {

 ASSERT_TRUE(1);

}

A sample_test.cpp and sample_test.c are included in the wogtest .zip file.

The TEST macro takes two parameters - the first is the name of the test case, the second is the
unique name of the test. A test case is a group of tests to which the test belongs.

Neither name has to be declared in advance, just type in any name you like to, as long as the
name complies with C/C++ naming conventions for variables.

You will find a summary for every test case in the test output, and, inside the test case, a test
result for every test belonging to that test case.

https://github.com/sheredom/utest.h#define-a-testcase

Date: 6th of February 2024 14 Version: 2.0e

4.4 wogtest Configurations

wogtest offers the possibility of configuring several parameters.
The default configuration can be changed by editing constants at the beginning of the include
files wogtest.hpp for C++ environments, resp. wogtest.h for C environments. Since the
wogtest.h file is only used in a pure C setup, changes do not influence the wogtest C++
behaviour defined in wogtest.hpp and vice versa.

4.4.1 wogtest Configurations in a C++ environment

The default configuration can be changed by editing constants at the beginning of the include
file wogtest.hpp for C++ environments:
//---------------------------------------

//select one of

// <stdint.h> to use "printf" or

// <iostream> to use "cout <<"

//---------------------------------------

#include <stdio.h> //use "printf"

//#include <iostream> //use "cout <<"

//---------------------------------------

//define max number of characters of error messages

//per ASSERT/EXPECT including your << addons

//no overflow check is performed

//one byte on stack required per character

//---------------------------------------

#define WOGTEST_MESSAGEBUFFERSIZE 1024

//---------------------------------------

//configure if heap should be used for testcases,

//if yes, define TESTCASES_NUM to DYNAMIC

//else, define TESTCASES_NUM to the number of maximal possible testcases

//in this case a static array of testcases is declared.

//12 bytes for every array element are required in RAM (not Stack)

//default is 20 testcases, thus 240 bytes of RAM

//Note: testcases is the number of groups of TESTS or TEST_F

//---------------------------------------

//#define WOGTESTCASES_NUM DYNAMIC

#define WOGTESTCASES_NUM 20

//---------------------------------------

//configure if float/double should be testable,

//if yes, remove comment from define WOGTEST_FLOAT
//in this case

//---------------------------------------

#define WOGTEST_FLOAT

//---------------------------------------

//Apply templates for operator<< output extensions

//if yes, remove comment from define USE_TEMPLATES
//---------------------------------------

#define USE_TEMPLATES

//---------------------------------------
//Apply printf for output of messages
//otherwise putchar is used
//only relevant when streams are NOT used
//if yes, remove comment from define USE_PRINTF
//---------------------------------------
//#define USE_PRINTF

Date: 6th of February 2024 15 Version: 2.0e

4.4.2 wogtest Configurations in a pure C setup

The default configuration can be changed by editing constants at the beginning of the include
file wogtest.h for pure C environments:

//---------------------------------------

#define WOGTEST_VERSION V2.0

//---------------------------------------

//---------------------------------------

//define max number of characters of error messages per ASSERT/EXPECT

//no overflow check is performed

//one byte on stack required per character

//---------------------------------------

#define WOGTEST_MESSAGEBUFFERSIZE 256

//---------------------------------------

//configure if float/double should be testable,

//if yes, remove comment from define WOGTEST_FLOAT

//in this case

//---------------------------------------

#define WOGTEST_FLOAT

//---------------------------------------

//for porting purposes to compiler/linker tool chains

//the WEAKFUNC macro may be adopted accordingly

//---------------------------------------

#define WEAKFUNC __attribute__((weak))

Date: 6th of February 2024 16 Version: 2.0e

5 Testing Macros

Matching with the google test syntax, two variants of each error checking condition are provided
- ASSERTs and EXPECTs. If an ASSERT fails, the test will cease execution and wogtest will
continue with the next test to be run. If an EXPECT fails, the remaining test will still be executed,
allowing for further checks to be performed.

Currently, the following macros are provided to be used within wogtests:

5.1 TEST

The TEST macro takes two parameters - the first is the name of the test case, the second is the
unique name of the test. A test case is a group of tests to which the test belongs.

Neither name has to be declared in advance, just type in any name you like to, as long as the
name complies with C/C++ naming conventions for variables.

You will find a summary for every test case in the test output, and, inside the test case, a test
result for every test belonging to that test case.

Example:

TEST(foo1, bar1) {

 // TEST Body

}

TEST(foo1, bar2) {

 // TEST Body

}

TEST(foo2, bar1) {

 // TEST Body

}

Like google test, wogtest defines and instantiates a class for every TEST.
The class name is built from the test case name, the test name and _test.
In the above example:
foo1_bar1_test

foo1_bar2_test

foo2_bar1_test

These classes may be used in your test code, for example, in friend declarations to access
private class attributes for testing purposes.
The test classes are derived from the class testing::Test and thus inherit all members of the
class Test. Inheritance in the above example:
testing::Test -> foo1_bar1_test

testing::Test -> foo1_bar2_test

testing::Test -> foo2_bar1_test

5.2 TEST_F

The TEST_F macro takes two parameters - the first is the name of the test case, the second is
the unique name of the test. A test case is a group of tests to which the test belongs.

The first parameter is also the name of a fixture class that needs to be declared before the first
TEST_F macro referencing to that fixture is called.

Example:

class foo1 : public testing::Test

{

 //setup of test environment for foo1 tests

};

Date: 6th of February 2024 17 Version: 2.0e

class foo2 : public testing::Test

{

 //setup of test environment for foo2 tests

};

TEST_F(foo1, bar1) {

 // TEST Body

}

TEST_F(foo1, bar2) {

 // TEST Body

}

TEST_F(foo2, bar1) {

 // TEST Body

}

5.2.1 Fixture Classes

The fixture classes may be used in your test code, for example, in friend declarations to access
private class attributes for testing purposes.
A new instance of the fixture is instantiated for every TEST_F execution.

The test classes are derived from the corresponding fixture class, and the fixture class is
derived from the class testing::Test. It therefore inherits all members of the class Test.
Inheritance in the above example:
testing::Test -> foo1 -> foo1_bar1_test

testing::Test -> foo1 -> foo1_bar2_test

testing::Test -> foo2 -> foo2_bar1_test

For the sake of separating testcase outputs, you may insert additional hierarchical levels:
class foo1 : public testing::Test

{

 //setup of test environment for foo1 tests

};

class group1 : public foo1 {};

class group2 : public foo1 {};

testing::Test -> foo1 -> group1 -> group1_bar1_test

testing::Test -> foo1 -> group2 -> group2_bar1_test

foo1 should thus include the “real” fixture, containing the code to initialize the tests while group1
and 2 are empty classes which split the output into a group1 summary and a group2 summary.

TEST and TEST_F macros can be mixed in the same xyz_test.cpp source file.

5.2.2 SetUp

The Test class contains an empty virtual method

virtual void SetUp(void) {}

This method may be overridden by the derived fixture.

After the constructor of the fixture is called, the SetUp method will be called during every
execution of a corresponding TEST_F.

Example:

class foo1 : public testing::Test

{

 void SetUp(void) override {

 //setup for foo1 tests

 }

}

Date: 6th of February 2024 18 Version: 2.0e

5.2.3 TearDown

The Test class contains an empty virtual method

virtual void TearDown(void) {}

This method may be overridden by the derived fixture.

Before the destructor of the fixture is called, the TearDown method will be called during every
execution of a corresponding TEST_F.

Example:

class foo1 : public testing::Test

{

 void SetUp(void) override {

 //setup for foo1 tests

 }

 void TearDown(void) override {

 //Clean up of foo1 tests

 }

}

5.2.4 Order of SetUp and TearDown calls

The constructor, the destructor, the virtual SetUp and the virtual TearDown methods will be
called in a fixed order during every test execution of a corresponding TEST_F fixture class.

Example:

class foo1 : public testing::Test

{

 foo1(void)

 {

 //constructor for foo1 tests

 //will be called 1st if defined

 }

 void SetUp(void) override

 {

 //Setup for foo1 tests

 //will be called 2nd if defined

 }

 //The run method of foo1 tests

 //is defined by the TEST_F macro,

 //contains the body of the corresponding TEST_F and

 //will be called 3rd (always defined)

 //Prototype of run is:

 //void foo1_testname_test::run(void)

 void TearDown(void) override

 {

 //CleanUp of foo1 tests

 //will be called 4th if defined

 }

 virtual ~foo1()

 {

 //destructor for foo1 tests

 //will be called 5th (last) if defined

 }

}

Date: 6th of February 2024 19 Version: 2.0e

5.3 Boolean Testing

A failing assertion raises a fatal failure.
Execution of the current TEST is terminated, and the TEST is considered failed.

A failing expectation raises a non-fatal failure.
In this case the execution of the current TEST is continued, and the TEST is considered failed.

5.3.1 ASSERT_TRUE(x)

Asserts that x evaluates to true (e.g. non-zero).

Example:

TEST(foo, bar) {

 uint32_t i = 1;

 ASSERT_TRUE(i); // pass!

 ASSERT_TRUE(42); // pass!

 ASSERT_TRUE(0); // fail!

}

5.3.2 ASSERT_FALSE(x)

Asserts that x evaluates to false (e.g. zero).

Example:

TEST(foo, bar) {

 uint32_t i = 0;

 ASSERT_FALSE(i); // pass!

 ASSERT_FALSE(1); // fail!

}

5.3.3 EXPECT_TRUE(x)

Expects that x evaluates to true (e.g. non-zero).

Example:

TEST(foo, bar) {

 uint32_t i = 1;

 EXPECT_TRUE(i); // pass!

 EXPECT_TRUE(42); // pass!

 EXPECT_TRUE(0); // fail!

}

5.3.4 EXPECT_FALSE(x)

Expects that x evaluates to false (e.g. zero).

Example:

TEST(foo, bar) {

 uint32_t i = 0;

 EXPECT_FALSE(i); // pass!

 EXPECT_FALSE(1); // fail!

}

5.4 Integer Testing

A failing assertion raises a fatal failure.
Execution of the current TEST is terminated, and the TEST is considered failed.

https://github.com/sheredom/utest.h#assert_truex
https://github.com/sheredom/utest.h#assert_falsex
https://github.com/sheredom/utest.h#assert_truex
https://github.com/sheredom/utest.h#assert_falsex

Date: 6th of February 2024 20 Version: 2.0e

A failing expectation raises a non-fatal failure.
In this case the execution of the current TEST is continued, and the TEST is considered failed.

5.4.1 ASSERT_EQ(x, y)

Asserts that x and y are equal.

Example:

TEST(foo, bar) {

 uint32_t a = 42;

 uint32_t b = 42;

 ASSERT_EQ(a, b); // pass!

 ASSERT_EQ(a, 42); // pass!

 ASSERT_EQ(42, b); // pass!

 ASSERT_EQ(42, 42); // pass!

 ASSERT_EQ(a, b + 1); // fail!

}

5.4.2 ASSERT_NE(x, y)

Asserts that x and y are not equal.

Example:

TEST(foo, bar) {

 uint32_t a = 42;

 uint32_t b = 13;

 ASSERT_NE(a, b); // pass!

 ASSERT_NE(a, 27); // pass!

 ASSERT_NE(69, b); // pass!

 ASSERT_NE(42, 13); // pass!

 ASSERT_NE(a, 42); // fail!

}

5.4.3 ASSERT_LT(x, y)

Asserts that x is less than y.

Example:

TEST(foo, bar) {

 uint32_t a = 13;

 uint32_t b = 42;

 ASSERT_LT(a, b); // pass!

 ASSERT_LT(a, 27); // pass!

 ASSERT_LT(27, b); // pass!

 ASSERT_LT(13, 42); // pass!

 ASSERT_LT(b, a); // fail!

}

5.4.4 ASSERT_LE(x, y)

Asserts that x is less than or equal to y.

Example:

TEST(foo, bar) {

 uint32_t a = 13;

 uint32_t b = 42;

 ASSERT_LE(a, b); // pass!

 ASSERT_LE(a, 27); // pass!

 ASSERT_LE(a, 13); // pass!

 ASSERT_LE(27, b); // pass!

 ASSERT_LE(42, b); // pass!

https://github.com/sheredom/utest.h#assert_eqx-y
https://github.com/sheredom/utest.h#assert_nex-y
https://github.com/sheredom/utest.h#assert_ltx-y
https://github.com/sheredom/utest.h#assert_lex-y

Date: 6th of February 2024 21 Version: 2.0e

 ASSERT_LE(13, 13); // pass!

 ASSERT_LE(13, 42); // pass!

 ASSERT_LE(b, a); // fail!

}

5.4.5 ASSERT_GT(x, y)

Asserts that x is greater than y.

Example:

TEST(foo, bar) {

 uint32_t a = 42;

 uint32_t b = 13;

 ASSERT_GT(a, b); // pass!

 ASSERT_GT(a, 27); // pass!

 ASSERT_GT(27, b); // pass!

 ASSERT_GT(42, 13); // pass!

 ASSERT_GT(b, a); // fail!

}

5.4.6 ASSERT_GE(x, y)

Asserts that x is greater than or equal to y.

Example:

TEST(foo, bar) {

 uint32_t a = 42;

 uint32_t b = 13;

 ASSERT_GE(a, b); // pass!

 ASSERT_GE(a, 27); // pass!

 ASSERT_GE(a, 13); // pass!

 ASSERT_GE(27, b); // pass!

 ASSERT_GE(42, b); // pass!

 ASSERT_GE(13, 13); // pass!

 ASSERT_GE(42, 13); // pass!

 ASSERT_GE(b, a); // fail!

}

5.4.7 EXPECT_EQ(x, y)

Expects that x and y are equal.

Example:

TEST(foo, bar) {

 uint32_t a = 42;

 uint32_t b = 42;

 EXPECT_EQ(a, b); // pass!

 EXPECT_EQ(a, 42); // pass!

 EXPECT_EQ(42, b); // pass!

 EXPECT_EQ(42, 42); // pass!

 EXPECT_EQ(a, b + 1); // fail!

}

5.4.8 EXPECT_NE(x, y)

Expects that x and y are not equal.

Example:

TEST(foo, bar) {

 uint32_t a = 42;

 uint32_t b = 13;

https://github.com/sheredom/utest.h#assert_gtx-y
https://github.com/sheredom/utest.h#assert_gex-y
https://github.com/sheredom/utest.h#assert_eqx-y
https://github.com/sheredom/utest.h#assert_nex-y

Date: 6th of February 2024 22 Version: 2.0e

 EXPECT_NE(a, b); // pass!

 EXPECT_NE(a, 27); // pass!

 EXPECT_NE(69, b); // pass!

 EXPECT_NE(42, 13); // pass!

 EXPECT_NE(a, 42); // fail!

}

5.4.9 EXPECT_LT(x, y)

Expects that x is less than y.

Example:

TEST(foo, bar) {

 uint32_t a = 13;

 uint32_t b = 42;

 EXPECT_LT(a, b); // pass!

 EXPECT_LT(a, 27); // pass!

 EXPECT_LT(27, b); // pass!

 EXPECT_LT(13, 42); // pass!

 EXPECT_LT(b, a); // fail!

}

5.4.10 EXPECT_LE(x, y)

Expects that x is less than or equal to y.

Example:

TEST(foo, bar) {

 uint32_t a = 13;

 uint32_t b = 42;

 EXPECT_LE(a, b); // pass!

 EXPECT_LE(a, 27); // pass!

 EXPECT_LE(a, 13); // pass!

 EXPECT_LE(27, b); // pass!

 EXPECT_LE(42, b); // pass!

 EXPECT_LE(13, 13); // pass!

 EXPECT_LE(13, 42); // pass!

 EXPECT_LE(b, a); // fail!

}

5.4.11 EXPECT_GT(x, y)

Expects that x is greater than y.

Example:

TEST(foo, bar) {

 uint32_t a = 42;

 uint32_t b = 13;

 EXPECT_GT(a, b); // pass!

 EXPECT_GT(a, 27); // pass!

 EXPECT_GT(27, b); // pass!

 EXPECT_GT(42, 13); // pass!

 EXPECT_GT(b, a); // fail!

}

5.4.12 EXPECT_GE(x, y)

Expects that x is greater than or equal to y.

Example:

TEST(foo, bar) {

https://github.com/sheredom/utest.h#assert_ltx-y
https://github.com/sheredom/utest.h#assert_lex-y
https://github.com/sheredom/utest.h#assert_gtx-y
https://github.com/sheredom/utest.h#assert_gex-y

Date: 6th of February 2024 23 Version: 2.0e

 uint32_t a = 42;

 uint32_t b = 13;

 EXPECT_GE(a, b); // pass!

 EXPECT_GE(a, 27); // pass!

 EXPECT_GE(a, 13); // pass!

 EXPECT_GE(27, b); // pass!

 EXPECT_GE(42, b); // pass!

 EXPECT_GE(13, 13); // pass!

 EXPECT_GE(42, 13); // pass!

 EXPECT_GE(b, a); // fail!

}

5.5 String Testing

To test 0-terminated character strings dedicated EXPECT_STR… and ASSERT_STR… macros
are provided.

When passing a null pointer as parameter to one of the EXPECT_STR… or ASSERT_STR…
macros they return as failed.

5.5.1 ASSERT_STREQ(x, y)

Asserts that strings x and y are equal and have the same length.
Comparison is case sensitive: Upper and lower case characters are considered unequal.

Example:

TEST(foo, bar) {

 const char* a = "foo";

 const char* b = "bar";

 const char* c = "bar";

 const char* d = "bAr";

 const char* e = "barrel";

 ASSERT_STREQ(a, a); // pass!

 ASSERT_STREQ(b, b); // pass!

 ASSERT_STREQ(b, c); // pass!

 ASSERT_STREQ(a, b); // fail!

 ASSERT_STREQ(b, d); // did fail if previous line did not abort testing!

 ASSERT_STREQ(b, e); // did fail if previous line did not abort testing!

}

5.5.2 ASSERT_STRNE(x, y)

Asserts that strings x and y are not equal or have different lengths.
Comparison is case sensitive: Upper and lower case characters are considered unequal.

Example:

TEST(foo, bar) {

 const char* a = "foo";

 const char* b = "bar";

 ASSERT_STRNE(a, b); // pass!

 ASSERT_STRNE(a, a); // fail!

}

5.5.3 ASSERT_STRCASEEQ(x, y)

Asserts that strings x and y are equal and have the same length.
Comparison is NOT case sensitive: Upper and lower case characters are considered equal.

Example:

TEST(foo, bar) {

 const char* a = "foo";

https://github.com/sheredom/utest.h#assert_streqx-y
https://github.com/sheredom/utest.h#assert_strnex-y
https://github.com/sheredom/utest.h#assert_streqx-y

Date: 6th of February 2024 24 Version: 2.0e

 const char* b = "bar";

 const char* c = "bAr";

 ASSERT_STRCASEEQ(a, a); // pass!

 ASSERT_STRCASEEQ(b, b); // pass!

 ASSERT_STRCASEEQ(b, c); // pass!

 ASSERT_STRCASEEQ(a, b); // fail!

}

5.5.4 ASSERT_STRCASENE(x, y)

Asserts that strings x and y are not equal or have different lengths.
Comparison is NOT case sensitive: Upper and lower case characters are considered equal.

Example:

TEST(foo, bar) {

 const char* a = "foo";

 const char* b = "bar";

 const char* c = "bAr";

 ASSERT_STRCASENE(a, b); // pass!

 ASSERT_STRCASENE(a, a); // fail!

 ASSERT_STRCASENE(b, c); // did fail if previous line did not abort!

}

5.5.5 EXPECT_STREQ(x, y)

Expects that the strings x and y are equal and have the same length.
Comparison is case sensitive: Upper and lower case characters are considered unequal.

Example:

TEST(foo, bar) {

 const char* a = "foo";

 const char* b = "bar";

 const char* c = "bar";

 const char* d = "bAr";

 const char* e = "barrel";

 EXPECT_STREQ(a, a); // pass!

 EXPECT_STREQ(b, b); // pass!

 EXPECT_STREQ(b, c); // pass!

 EXPECT_STREQ(a, b); // fail!

 EXPECT_STREQ(b, d); // fail!

 EXPECT_STREQ(b, e); // fail!

}

5.5.6 EXPECT_STRNE(x, y)

Expects that the strings x and y are not equal or have different lengths.
Comparison is case sensitive; Upper and lower case characters are considered unequal.

Example:

TEST(foo, bar) {

 const char* a = "foo";

 const char* b = "bar";

 EXPECT_STRNE(a, b); // pass!

 EXPECT_STRNE(a, a); // fail!

}

5.5.7 EXPECT_STRCASEEQ(x, y)

Expects that the strings x and y are equal and have the same length.
Comparison is NOT case sensitive: Upper and lower case characters are considered equal.

https://github.com/sheredom/utest.h#assert_strnex-y
https://github.com/sheredom/utest.h#assert_streqx-y
https://github.com/sheredom/utest.h#assert_strnex-y
https://github.com/sheredom/utest.h#assert_streqx-y

Date: 6th of February 2024 25 Version: 2.0e

Example:

TEST(foo, bar) {

 const char* a = "foo";

 const char* b = "bar";

 const char* c = "bAr";

 EXPECT_STRCASEEQ(a, a); // pass!

 EXPECT_STRCASEEQ(b, b); // pass!

 EXPECT_STRCASEEQ(b, c); // pass!

 EXPECT_STRCASEEQ(a, b); // fail!

}

5.5.8 EXPECT_STRCASENE(x, y)

Expects that the strings x and y are not equal or have different lengths.
Comparison is NOT case sensitive: Upper and lower case characters are considered equal.

Example:

TEST(foo, bar) {

 const char* a = "foo";

 const char* b = "bar";

 const char* c = "bAr";

 EXPECT_STRCASENE(a, b); // pass!

 EXPECT_STRCASENE(a, a); // fail!

 EXPECT_STRCASENE(b, c); // fail!

}

5.6 Floating Point Testing

Please note: Testing of float and double is only available when #define WOGTEST_FLOAT is
configured at the top of the wogtest header include file. In this case wogtest adds its own
functionality to compare 32-bit float and 64-bit double precision floating point numbers and to
convert them into ASCII strings for output purposes.

Floats are output with 7 digits on the righthand side of the dot and a maximum of 13 digits on
the lefthand side plus a signment in case of negative values, summing up to maximal 22 digits
in total.
<-><max13digits>.<7digits>

Example: 42.0000991

Double are output with 15 digits on the right hand side of the dot and a maximum of 14 digits on
the lefthand side plus an signment in case of negative values, summing up to maximal 31 digits
in total.
<-><max14digits>.<15digits>

Example: 42.000011444091796

Exponential floating point format of output is not provided, thus in cases where the unsigned
integer value of a floating point does not fit into an unsigned 32-bit resp. 64-bit integer an error
message is displayed instead of the value. In case of positive overflow:
“ERROR:FLOAT_OVERFLOW" resp. “ERROR:DOUBLE_OVERFLOW" and in case of negative
underflow "ERROR:FLOAT_UNDERFLOW” resp. "ERROR:DOUBLE_UNDERFLOW".
In the unlikely event that the buffer of the conversion overflows
"ERROR:BUFFER_OVERFLOW" is returned instead of the floating point number in ASCII
format.

Please note: Only the output functionality of failing tests is affected by these size limitations.
Assertions and expectations do work (fail or pass) in full value range.

https://github.com/sheredom/utest.h#assert_strnex-y

Date: 6th of February 2024 26 Version: 2.0e

5.6.1 ASSERT_FLOAT_EQ(x, y)

Asserts that the single precision floating point values x and y are within 4 ULPs distance.

1 ULP refers to the least significant digit of the mantissa.
32-bit single precision floating points are composed of:

 1 bit signment,

 8 bit exponent and

23 bits of mantissa, where the 24th bit is always considered 1.

Example:

TEST(foo, bar) {

 float a = 42.0f;

 float b = 42.00001f;

 float c = 42.0001f;

 ASSERT_FLOAT_EQ(a, b); // pass!

 ASSERT_FLOAT_EQ(a, b); // pass!

 //a evaluates to 42.0000000

 //c evaluates to 42.0000991

 ASSERT_FLOAT_EQ(a, c); // fail!

}

5.6.2 ASSERT_DOUBLE_EQ(x, y)

Asserts that the double precision floating point values x and y are within 4 ULPs distance.

1 ULP refers to the least significant digit of the mantissa.
64-bit double precision floating points are composed of:

 1 bit signment,

11 bit exponent and

52 bits of mantissa, where the 53rd bit is always considered 1.

Example:

TEST(foo, bar) {

 double a = 42.0f;

 double b = 42.000001f;

 double c = 42.00001f;

 ASSERT_DOUBLE_EQ(a, b); // pass!

 //a evaluates to 42.00000000000000

 //c evaluates to 42.00001144491796

 ASSERT_DOUBLE_EQ(a, c); // fail!

}

5.6.3 ASSERT_NEAR(x, y, epsilon)

Asserts that the double precision floating point values x and y are within epsilon distance of
each other.

Example:

TEST(foo, bar) {

 double a = 42.0f;

 double b = 42.01f;

 // a evaluates to 42.00000000000000

 // b evaluates to 42.00999832133203

 // 0.01f evaluates to 0.00999999976482

 ASSERT_NEAR(a, b, 0.01f); // pass!

 // a evaluates to 42.00000000000000

 // b evaluates to 42.00999832133203

https://github.com/sheredom/utest.h#assert_nearx-y-epsilon
https://github.com/sheredom/utest.h#assert_nearx-y-epsilon
https://github.com/sheredom/utest.h#assert_nearx-y-epsilon

Date: 6th of February 2024 27 Version: 2.0e

 //0.001f evaluates to 0.00100000047497

 ASSERT_NEAR(a, b, 0.001f); // fail!

}

5.6.4 EXPECT_FLOAT_EQ(x, y)

Expects that the single precision floating point values x and y are within 4 ULPs distance.

1 ULP refers to the least significant digit of the mantissa.
32-bit single precision floating points are composed of:

 1 bit signment,

 8 bit exponent and

23 bits of mantissa, where the 24th bit is always considered 1.

Example:

TEST(foo, bar) {

 float a = 42.0f;

 float b = 42.00001f;

 float c = 42.0001f;

 EXPECT_FLOAT_EQ(a, b); // pass!

 EXPECT_FLOAT_EQ(a, b); // pass!

 //a evaluates to 42.0000000

 //c evaluates to 42.0000991

 EXPECT_FLOAT_EQ(a, c); // fail!

}

5.6.5 EXPECT_DOUBLE_EQ(x, y)

Expects that the double precision floating point values x and y are within 4 ULPs distance.

1 ULP refers to the least significant digit of the mantissa.
64-bit double precision floating points are composed of:

 1 bit signment,

11 bit exponent and

52 bits of mantissa, where the 53rd bit is always considered 1.

Example:

TEST(foo, bar) {

 double a = 42.0f;

 double b = 42.000001f;

 double c = 42.00001f;

 EXPECT_DOUBLE_EQ(a, b); // pass!

 //a evaluates to 42.00000000000000

 //c evaluates to 42.00001144491796

 EXPECT_DOUBLE_EQ(a, c); // fail!

}

5.6.6 EXPECT_NEAR(x, y, epsilon)

Expects that the double precision floating point values x and y are within epsilon distance of
each other.

Example:

TEST(foo, bar) {

 double a = 42.0f;

 double b = 42.01f;

 // a evaluates to 42.00000000000000

https://github.com/sheredom/utest.h#assert_nearx-y-epsilon
https://github.com/sheredom/utest.h#assert_nearx-y-epsilon
https://github.com/sheredom/utest.h#assert_nearx-y-epsilon

Date: 6th of February 2024 28 Version: 2.0e

 // b evaluates to 42.00999832133203

 // 0.01f evaluates to 0.00999999976482

 EXPECT_NEAR(a, b, 0.01f); // pass!

 // a evaluates to 42.00000000000000

 // b evaluates to 42.00999832133203

 //0.001f evaluates to 0.00100000047497

 EXPECT_NEAR(a, b, 0.001f); // fail!

}

5.7 Exception Testing

Exceptions need to be configured in your development environment and compiler.
Please refer to your compiler user manual.

For Arm µVision Keil, you need to add the option -fexceptions in the Compiler Misc Controls

5.7.1 ASSERT_THROW(x, exception_type)

Asserts that exception_type will be thrown when code x is executed.

Example:

class foo

{

public:

 class fooExc { };

 class barExc { };

 void bar(int value) { if(value == 1) throw fooExc(); }

};

TEST(foo, bar)

{

 foo fooObj;

 ASSERT_THROW(fooObj.bar(1), foo::fooExc); // pass!

 ASSERT_THROW(fooObj.bar(1), foo::barExc); // fail!

}

5.7.2 ASSERT_NO_THROW(x)

Asserts that no exception will be thrown when code x is executed.

Example:

class foo

{

public:

 class fooExc { };

 class barExc { };

 void bar(int value) { if(value == 1) throw fooExc(); }

};

TEST(foo, bar)

{

 foo fooObj;

 ASSERT_NO_THROW(fooObj.bar(0)); // pass!

 ASSERT_NO_THROW(fooObj.bar(1)); // fail!

}

5.7.3 ASSERT_ANY_THROW(x);

Asserts that an exception of any exception_type will be thrown when code x is executed.

Example:

class foo

Date: 6th of February 2024 29 Version: 2.0e

{

public:

 class fooExc { };

 class barExc { };

 void bar(int value) { if(value == 1) throw fooExc(); }

};

TEST(foo, bar)

{

 foo fooObj;

 ASSERT_ANY_THROW(fooObj.bar(1)); // pass!

 ASSERT_ANY_THROW(fooObj.bar(0)); // fail!

}

5.7.4 EXPECT_THROW(x, exception_type)

Expects that exception_type will be thrown when code x is executed.

Example:

class foo

{

public:

 class fooExc { };

 class barExc { };

 void bar(int value) { if(value == 1) throw fooExc(); }

};

TEST(foo, bar)

{

 foo fooObj;

 EXPECT_THROW(fooObj.bar(1), foo::fooExc); // pass!

 EXPECT_THROW(fooObj.bar(1), foo::barExc); // fail!

}

5.7.5 EXPECT_NO_THROW(x)

Expects that no exception will be thrown when code x is executed.

Example:

class foo

{

public:

 class fooExc { };

 class barExc { };

 void bar(int value) { if(value == 1) throw fooExc(); }

};

TEST(foo, bar)

{

 foo fooObj;

 EXPECT_NO_THROW(fooObj.bar(0)); // pass!

 EXPECT_NO_THROW(fooObj.bar(1)); // fail!

}

5.7.6 EXPECT_ANY_THROW(x);

Expects that an exception of any exception_type will be thrown when code x is executed.

Example:

class foo

{

public:

Date: 6th of February 2024 30 Version: 2.0e

 class fooExc { };

 class barExc { };

 void bar(int value) { if(value == 1) throw fooExc(); }

};

TEST(foo, bar)

{

 foo fooObj;

 EXPECT_ANY_THROW(fooObj.bar(1)); // pass!

 EXPECT_ANY_THROW(fooObj.bar(0)); // fail!

}

5.8 Test Execution Macros

5.8.1 SUCCEED

Always passes, is intended for future google test extensions and may currently be used to
output information into the test result.

Example:

TEST(foo, bar)

{

 SUCCEED() << "Hello World"; // pass!

}

5.8.2 FAIL

Generates a fatal failure, further test execution is therefore aborted.

Example:

TEST(foo, bar)

{

 FAIL() << "Start here"; // fail!

 //never each this line

}

5.8.3 ADD_FAILURE

Generates a non-fatal failure; the further test is therefore executed.

Example:

TEST(foo, bar)

{

 ADD_FAILURE() << "Start here"; // fail!

 //this line is reached

}

5.8.4 ADD_FAILURE_AT(file,line)

Generates a non-fatal failure at the file and line number specified.

Example:

TEST(foo, bar)

{

 ADD_FAILURE_AT("myfile",123) << "Start here"; // fail!

 //this line is reached

}

Date: 6th of February 2024 31 Version: 2.0e

5.8.5 HasFatalFailure

Returns true if the current test has a fatal failure.

Prototype: bool HasFatalFailure(void);

Example:

void foo(void)

{

 ASSERT_EQ(1,2); //fails!

}

TEST(foo, bar)

{

 foo();

 if(HasFatalFailure())

 return;

 //this line is reached only in case of no fatal failure

}

5.8.6 HasNonfatalFailure

Returns true if the current test has a non-fatal failure.

Prototype: bool HasNonFatalFailure(void);

Example:

void foo(void)

{

 EXPECT_EQ(1,2); //fails!

}

TEST(foo, bar)

{

 foo();

 if(HasNonfatalFailure()) return;

 //this line is reached only in case of no nonfatal failure

}

5.8.7 HasFailure

Returns true if the current test has any failure, either fatal or non-fatal.

Prototype: bool HasFailure(void);

Example:

void foo(void)

{

 EXPECT_EQ(1,2); //fails!

 ASSERT_EQ(1,2); //fails!

}

TEST(foo, bar)

{

 foo();

 if(HasFailure()) return;

 //this line is reached only in case of no failure

}

Date: 6th of February 2024 32 Version: 2.0e

6 Testing in C

In cases where there is no C++ compiler available on the intended target, wogtest provides a
subset of functionality in a pure C environment. The tests and the software under test may thus
be written in C, without the need for C++. Nevertheless, the application scenario to write tests
under control of google test on the PC and the re-run of the tests under wogtest control on the
target is supported without the need to edit the tests. In this case it is recommended to take the
later use in a pure C environment into account from the very beginning to restrict the used
google test features to those applicable in a C environment and supported by wogtest as
depicted in this chapter.

Consequently, features as described in chapter 6.4 which utilize C++ capabilities are not
available in this pure C setup of wogtest.

6.1 Writing a TEST in pure C setup

Please refer to the chapter 4.

List of potential steps to be performed to run tests in a pure C setup:

• Setup your project by replacing the productive main function by the main_test.c function.

• Add a unit_test.c module where the used testcases are defined by TESTCASE macros.

• If tests were already written for google test and shall be re-executed under wogtest
control in a pure C setup, rename the xyz_test.cpp files which contain the written tests
into xyz_test.c files.

• For new tests write them into xyz_test.c files.

• A sample_test.c file is provided as part of the wogtest sources and may be used as
template for own tests.

• Copy the gtest directory with the gtest.h and wogtest.h header files included into the
source path where your test sources main_test.c, unit_test.c and xyz_test.c are located.
Thus the include path “gtest/gtest.h” is resolved by the compiler.

• Make sure that in your project redirection of printf output to a terminal or debugger print
viewer window properly works.

• Build and run the project and observe the test results.

• The test main function terminates with the return value 0 if all tests passed and 1
otherwise.

6.2 Supported features in pure C setup

A substantial subset of wogtest features are also supported in a pure C setup.

These features are supported in a pure C setup:

• TEST macro as described in chapter 5.1 with the exception that the instruction
testing::InitGoogleTest(); in the main function needs to be removed

• Boolean ASSERT and EXCEPT Macros as described in chapter 5.3

• Integer ASSERT and EXCEPT Macros as described in chapter 5.4

• String ASSERT and EXCEPT Macros as described in chapter 5.5

• Floating point ASSERT and EXCEPT Macros as described in chapter 5.6

• Test execution Macros as described in in chapter 5.8

6.3 Additional features

A few features are added to wogtest in a pure C setup to compensate shortcomings of the
restricted C language capabilities.

These features are: added in a pure C setup:

Date: 6th of February 2024 33 Version: 2.0e

• As a substitution to the non-supported fixtures dedicated SetUp and TearDown functions
are automatically called before and after every test execution.

• SetUp and TearDown functions may optionally be defined per testcase and therefore
shared between several tests.

• The TESTCASE macro needs to be used to define a new testcase in a source file, which
does not include TEST macros. Hence a separate Unit_test.c source file is
recommended.

6.3.1 SetUp Functions

SetUp functions may optionally be defined per testcase and therefore be shared between
several tests of the same testcase. The name of the corresponding function is composed from
the testcase name and _SetUp. The SetUp function is automatically called before every test
execution and thus does not need to be explicitly called by the tests.

Eample:

void foo1_SetUp(void){};

void foo2_SetUp(void){};

TEST(foo1, bar)

{

 //foo1_SetUp() is automatically called, no need to add it here

 EXPECT_...

}

6.3.2 TearDown Functions

TearDown functions may optionally be defined per testcase and therefore be shared between
several tests of the same testcase. The name of the corresponding function is composed from
the testcase name and _TearDown. The TearDown function is automatically called after every
test execution and thus does not need to be explicitly called by the tests.

Eample:

void foo1_TearDown(void){//TearDown body executed after test eecution};

void foo2_TearDown(void){//TearDown body executed after test eecution };

TEST(foo1, bar)

{

 EXPECT_...

 //foo1_TearDown() is automatically called, no need to add it here

}

6.3.3 TESTCASE Macro

Every usage of a new testcase name in TEST macros need be accompanied by a
corresponding testcase definition by a TESTCASE macro.

Example for file Unit_test.c:

#include “gtest/gtest.h”

TESTCASE(foo1);

TESTCASE(foo2);

Example for file foo_test.c:

#include “gtest/gtest.h”

TEST(foo1, bar1){ //body of foo1_bar1_test

}

TEST(foo1, bar2){ //body of foo1_bar2_test

}

Date: 6th of February 2024 34 Version: 2.0e

TEST(foo2, bar1){ //body of foo2_bar1_test

}

6.4 Limitations of a pure C setup

Not supported features in a pure C setup:

• Test fixture classes and the corresponding TEST_F macro including the Constructor,
SetUp, TearDown and Destructor methods.

• Exception Testing including the corresponding assertions and expectations

• << output extensions by user messages

• Automatic detection of testcases is replaced by the TESTCASE macro defined in
chapter 6.3.3. If testcases are not defined by the TESTCASE macro, their corresponding
tests are not executed during the test run.

• Automatic detection of tests defined by the TEST macro is based on weak attributes
which need to be considered by the linker. For any testcase, defined by the TESTCASE
macro, 100 tests are created as empty weak functions, which may be overridden by the
body of tests defined by TEST macros. The storage space for testcases is by default
limited to 20 testcases. The wogtest.h file may be adapted by the user to deviate from
the default values of 100 tests per testcase and 20 testcases. Since the wogtest.h file is
only used in a pure C setup, changes do not influence the wogtest C++ behaviour
defined in wogtest.hpp and vice versa.

• For porting purposes the weak attribute is defined as macro in the configuration section
at the top of the wogtest.h header file. Please refer also to chapter 4.4.2

Date: 6th of February 2024 35 Version: 2.0e

7 License

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT
TO THIS SOFTWARE. IN NO EVENT SHALL THE AUTHORS OR MicroConsult GmbH BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Date: 6th of February 2024 36 Version: 2.0e

8 History of Change

V2.0c 9th of January 2024

V2.0d 2nd of February 2024
HoC added as chapter 8.
All new lines in text outputs are now preceded by an explicit carriage return.
Terminal SW which is not adding CR automatically is now supported as well.

V2.0e 6th of February 2024
inlining of some static functions to get rid of warnings in case of GCC
Destructor of class Test made virtual to ensure proper destruction of fixture classes

Date: 6th of February 2024 37 Version: 2.0e

MicroConsult GmbH

Remo Markgraf

