
As of 08.02.2026

© MicroConsult Academy GmbH
More trainings on www.microconsult.com. Subject to change.
All prices per attendee, in EUR plus VAT.
Contact: info@microconsult.com, phone +49 (0)89 450617-71

Cortex®-M23, M33: Armv8-M Architecture Training for Trainees with Knowledge of
the Previous Version - Live Online Training

Get familiar with the new Armv8-M architecture (Cortex®-M23 and -M33) and learn how to write software in C and
Assembler. This workshop focuses on software and covers a variety of topics, such as the TrustZone, processor
architecture, extended instruction set, exception behavior, and many more. After the training, you can locate
programs in memory in secure and non-secure configuration and test them - the perfect start for designing
Cortex®-M23/M33 based systems.

Objectives
 

Get familiar with the new Armv8-M architecture (Cortex®-M23 and -M33) and learn how to write software in C and
Assembler.

This workshop focuses on software and covers a variety of topics, such as the TrustZone, processor architecture,
extended instruction set, exception behavior, and many more.

After the training, you can locate programs in memory in secure and non-secure configuration and test them - the
perfect start for designing Cortex®-M23/M33 based systems.

Participants
 
The training addresses software and hardware developers with a basic knowledge of the previous architecture
(Armv6-M/ Armv7-M architecture of the Cortex®-M0/M0+/M3/M4 or -M7).

Requirements
 

Basic knowledge of the Armv6-M/ Armv7-M architecture of the Cortex®-M0/M0+/M3/M4 or -M7 as well as basic
knowledge of ANSI-C and microcontrollers is required. The training focuses on the new features offered by the
Cortex®-M23, M33 and the Armv8-M architecture.

Live-Online-Training

         
* Price per attendee, in Euro plus VAT  

Training code: LE-ARMV8MU
 

Face-To-Face - English

Duration
2 days  

Live Online - German

Duration
2 days  

Face-To-Face - German



As of 08.02.2026

© MicroConsult Academy GmbH
More trainings on www.microconsult.com. Subject to change.
All prices per attendee, in EUR plus VAT.
Contact: info@microconsult.com, phone +49 (0)89 450617-71

Duration
2 days  

Cortex®-M23, M33: Armv8-M Architecture Training for Trainees with Knowledge of the
Previous Version - Live Online Training

Content
TrustZone for Armv8-M
  - Secure state transitions
  - Function calls from secure state to non-secure state
  - Function returns from non-secure state
  - Practical exercises: Developing and setting up mixed secure/non-secure projects for Cortex™-M33

Cortex®-M (Armv8-M) Processor Architecture
  - Stack limit register
  - Secure state, security transitions
  - Banked registers
  - Cortex®-M memory map, system control block
  - Practical exercises: New stack limit registers

Differences to the Armv6-M and Armv7-M Processor Architecture

Cortex®-M33, M23 Extended Instruction Set
  - Branch and control flow instructions with security transitions
  - Security instructions
  - Assembler directives
  - Pracitcal exercises: Generating Assembler routines, Assembler debugging, code optimization

Exception and Interrupt Handling
  - Security targeting
  - Banked exceptions
  - Banked vector tables
  - Tail chaining with security transitions
  - Interrupt configuration and status
  - Secure exception priority boosting
  - Secure faults
  - Pracitcal exercises: System tick, supervisor call and PendSV in the context of RTOS applications
  - Practical exercises: Fault handlers and status information output

Memory Protection Unit MPU for Embedded Systems
  - Armv8-M MPU
  - Comparison to previous Armv7-M MPU
  - Practical exercises: Programming the MPU
  - Practical exercises: Dynamic reprogramming in the scheduler

Security Attribution Unit (SAU, IDAU)
  - Overview on the security and implementation defined attribution unit
  - Attribution attributes secure, non-secure, non-secure callable
  - Practical exercises: Programming the security attribution unit

Hardware-near C Programming based on CMSIS
  - CMSIS extensions for Armv8-M

Exercises with Keil µVision in Assembler and C
  - The exercises are done using Keil Studio (Visual Studio Code). Keil uVision is sometimes used as a debugger.


